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Abstract

When a crack is lodged in an inclusion, both difference between the modulus of the inclusion and matrix material and

stress-free transformation strain of the inclusion will cause the near-tip stress intensity factor to be greater (amplifi-

cation effect) or less (shielding or toughening effect) than that prevailing in a homogeneous material. In this paper, the

inclusion may represent a second phase particle in composites and a transformation or microcracked process zone in

brittle materials, which may undergo a stress-free transformation strain induced by phase transformation, micro-

cracking, thermal expansion mismatch and so forth. A close form of solution is derived for predicting the toughening

(or amplification) effect. The derivation is based on Eshelby equivalent inclusion approach that provides rigorous

theoretical basis to unify the modulus and transformation contributions to the near-tip field. As validated by numerical

examples, the developed formula has excellent accuracy for different application cases.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Microcracking in a process zone near macrocrack tip has been observed in many brittle materials
(Ruehle et al., 1987; Hueber and Jillek, 1977; Knehans and Steinbrech, 1982; Hoaland and Embury, 1980).
It was found that the process zone may postpone the outset of unstable macroscopic crack propagation and
is a viable toughening mechanism (Evans and Mater, 1988; Evans and Faber, 1986; McMeeking and Evans,
1982; Hutchinson, 1987; Evans and Cannon, 1986). Toughening arises from two consequences of micro-
cracking, reduction in modulus and dilatational strain due to release of residual stress. The present theo-
retical analyses (McMeeking and Evans, 1982; Hutchinson, 1987; Evans and Cannon, 1986) treat the
microcrack process zone as a dilatational particle with reduction in modulus, and establish considerable
similarities between transformation toughening and microcrack toughening, by relating the change in
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toughness to the permanent dilatation and the reduced modulus in the process zone. The former is often
called the transformation toughening, and latter the modulus toughening.
The stress-induced transformations which can cause significant toughening include martensitic and

ferroelastic (Evans and Mater, 1988; Clussen et al., 1984) transformations, as well as twinning. The former
involves both dilatational and shear components of the transformation strain, while the latter typically
have only a shear component. Considerable toughness enhancement is observed in ceramic systems
strengthened by tetragonal zirconia (ZrO2) particles which transform martensitically to monoclinic crystal
structure, resulting in a shear strain of about 16% and a dilatation of 4% (Hoaland and Embury, 1980;
Evans and Mater, 1988; Evans and Faber, 1986; McMeeking and Evans, 1982). It is well known that
variation in crystal structure will, in general, change the elastic modulus of the transformation zone
(Kriven, 1990).
In addition, if crack tip is partially penetrating a second phase particle in composite materials, it will, in

most cases, have different modulus and coefficients of thermal expansion compared with matrix material.
An appreciable misfit strain will then develop on cooling from fabrication temperature or during variation
in environmental temperature (Withers et al., 1989).
Therefore, in most cases the modulus and transformation toughening take place inevitably at the same

time. They should be regarded as two cooperative processes. Hence, a method, which can unify the
modulus toughening and transformation toughening, is of general significance.
However, the present model for transformation toughening (McMeeking and Evans, 1982; Lambro-

poulos, 1986; Budiansky et al., 1983) is developed based on the assumption that the transformation zone
and matrix material have same elastic constants. A close form of solution to modulus toughening is given
by Hutchinson (1987). However, it is limited to the lowest order effect of the modulus difference between
inclusion and matrix material. Furthermore, it was assumed that the modulus and transformation con-
tributions can be simply superimposed. The interaction effects between them are not yet investigated.
The toughening mechanisms of the modulus and transformation toughening essentially are the same,

both resulting in mismatch strains between inclusion and matrix material. Since the analysis of the
transformation toughening for homogeneous inclusion (McMeeking and Evans, 1982) is based on Eshelby
inclusion technique, it is natural to treat the toughening problem for inhomogeneous inclusion by the
Eshelby equivalent inclusion technique.
In this paper, we treat the problem in a more general case: the inclusion surrounding crack-tip may

represent a transformation or microcracking process zone, or a second phase particle as the crack partially
penetrating it. The inclusion may undergo some degree of stress-free transformation strain, such as induced
by phase transformation, thermal expansion mismatch, or release of residual stress as microcrack forming.
Both the modulus difference between inclusion and matrix material and the transformation strain will cause
the near-tip stress intensity factor (SIF) to be greater (amplification effect) or less (shielding effect) than that
prevailing in a homogeneous material. However, for convenience of description in the present paper, we use
the term of toughening to present both the amplification and shielding effects. We first develop a method to
unify the modulus and transformation toughening based on Eshelby equivalent inclusion technique. Then
several applications to modulus and transformation toughening as well as the interaction effects between
them will be discussed.

2. Mode and formulation

As shown in Fig. 1(a), the crack tip is located within an inclusion, which may have an arbitrary shape,
but is symmetrical with respect to the crack plane. The inclusion undergoes a stress-free transformation
strain, eT

�
. The Young�s modulus and Poisson�s ratio of the inclusion, EI and mI, differ from those of the

matrix material, EM and mM. It is assumed that the size of the inclusion is small compared with crack length
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and other dimensions of the crack body. Therefore, the inclusion is within applied remote K-field and the
near-tip fields have the same form, denoted by Ktip:

rij ¼
Kffiffiffiffiffiffiffi
2pr

p ~rrijðhÞ r ! 1 ð2:1Þ

rij ¼
Ktipffiffiffiffiffiffiffi
2pr

p ~rrijðhÞ r ! 0 ð2:2Þ

Now, we consider a differential element dA within the inclusion, which undergoes a stress-free transfor-
mation strain, eT

�
, simultaneously sustains an applied strain field eA, exerted by the remote stress intensify

K. The equivalent transformation strain in dA, eT, is given by

eT ¼ ½ðCI 	 CMÞSþ CM�	1½ðCM 	 CIÞeA þ CIe
T� � ð2:3Þ

Fig. 1. Definitions of auxiliary problems (b) and (c) and their use in construction of the solution to the primary problem (a).
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according to Eshelby equivalent inclusion approach (Withers et al., 1989; Eshelby, 1957), where S is the
Eshelby tensor, dependent solely upon the inclusion shape and the Poisson�s ratio of the matrix material. CI
and CM are the elastic tensors of the inclusion and matrix material, respectively. As shown in (2.3), the
equivalent transformation strain eT in dA varies with the applied strain eA, and is not zero for an inhomo-
geneous inclusion ðCI 6¼ CMÞ even when eT

� ¼ 0.
The Eshelby approach is mathematically rigorous for an infinite matrix containing a single ellipsoidal

inclusion. When the inclusion undergoes a uniform stress-free transformation strain, the stress and strain
within the inclusion are uniform. However, in order to utilize the approach in more realistic situations,
there has been considerable activity in extending Eshelby approach to various problems, such as the in-
teraction of two ellipsoidal inclusions (Moschobidis and Mura, 1975), the behavior of hybrid composite
(Taya and Chou, 1981) and short fibre reinforced composites (Withers et al., 1989), the calculation of the
stress field inside a nonellipsoidal inclusion which are not uniform (Johnson et al., 1980), to cite only a few
examples. In the present study, we extend the Eshelby approach to the case of an inclusion with arbitrary
shape embedded in crack-tip field. Either the nonellipsoidal shape of the inclusion considered or the sin-
gular crack-tip field will result in a nonuniform stress–strain field within the inclusion. However, we assume
that the Eshelby theory can be used to each differential element within the inclusion, which undergoes
uniform transformation strain determined by (2.3) and the resultant stresses in which are uniform. Then a
nonuniform transformation strains, therefore also the stresses, inside the inclusion, can be obtained by
integrating (2.3) in the domain of the inclusion.
For simplicity, it is assumed that the inclusion and matrix material are isotropic and their Poisson�s

ratios are the same, denoted by m. Then we have

CI ¼ aCM ð2:4Þ

where

a ¼ EI=EM ð2:5Þ

Combining (2.3) and (2.4), it gives

eT ¼ eTA þ eTe ¼ LeA þ TeT
� ð2:6Þ

where

L ¼ ½ða 	 1ÞSþ I�	1ð1	 aÞ ð2:7Þ

T ¼ a½ða 	 1ÞSþ I�	1 ð2:8Þ
Here, I is the identity tensor. Thus, the tensor L and T relate, respectively, the equivalent transformation
strain eT in the inclusion to the applied strain eA, and the inherent transformation strain eT

�
without going

into the details of the form of the CI and CM tensors. The first term in the right hand side of (2.6) is the
equivalent transformation strain induced by the applied strain, denoted by eTA for the inhomogeneous
inclusion. It is zero for homogeneous inclusion (CI ¼ CM). The second term in the right hand side of (2.6) is
the equivalent transformation strain induced by the inherent transformation strain eT

�
of the inclusion,

denoted by eTe, which is equal to the eT
�
for homogeneous inclusion, but depends upon CI and CM for

inhomogeneous inclusion. According to transformation toughening theory (Knehans and Steinbrech, 1982;
Hoaland and Embury, 1980), the increment in SIF due to the differential element with transformation
strain eT defined in (2.6) is given by

dK0tip ¼
1

2
ffiffiffiffiffiffi
2p

p EM
1	 m2

r	3=2XðeTab; hÞdA ð2:9Þ
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for plane strain mode I crack, where

XðeTab; hÞ ¼ ðeT11 þ eT22Þ cos
3h
2
þ 3eT12 cos

5h
2
sin h þ 3

2
ðeT22 	 eT11Þ sin h sin

5h
2

ð2:10Þ

It is essential to note that Eq. (2.9) is derived for the case that the transformation area have the same
modulus with its surrounding. Therefore, the elastic modulus EM used in (2.9), and the K0tip is the SIF for the
crack tip within a medium of same modulus as matrix materials, not the desired factor Ktip for the case
shown in Fig. 1(a).
It can be seen from (2.6) that the equivalent transformation strains contributed from applied load and

inherent transformation strain can be simply superimposed for an inhomogeneous inclusion. Hence, their
contributions to the variation in the SIF can be separately evaluated.
To obtain the Ktip=K solution for the primary problem in Fig. 1(a), we adopt the method developed by

Hutchinson (1987). The solution is constructed using solutions to two auxiliary problems denoted by (b)
and (c) in Fig. 1. Once the solutions to the two auxiliary problems are in hand, the ratio of the SIF sought is
given by

Ktip
K

¼
K0tip
K

 !
K0tip
Ktip

 !,
ð2:11Þ

where K0tip=K is the ratio of the near-tip to remote intensity factor in the auxiliary problem (b), and K
0
tip=Ktip

is the corresponding ratio in the auxiliary problem (c).
The solution to the auxiliary problem (b) can be written down immediately using (2.9)

K0tip
K

¼ 1þ EM
2
ffiffiffiffiffiffi
2p

p
1	 m2ð ÞK

Z
A
r	3=2XðeTab; hÞdA ð2:12Þ

where the area integral extends over the upper half of Ac, excluding the inner circular region.
To generate the solution to auxiliary problem (c), Hutchinson exploited a special region Ac for which

Ktip=K is known. The special region Ac is the infinite strip with a centered semi-infinite crack shown in Fig.
2. From a simple energy argument or application of the J-integral (see (3.22) in the next section for the case
of mI ¼ mM) the following relation holds

Ktip
K

¼
ffiffiffi
a

p
ð2:13Þ

exactly for this problem. Then by evaluating K0tip=K for this special mode, one can ‘‘back-out’’ the desired
universal result K0tip=Ktip for the auxiliary problem (c) used in (2.11). The details for evaluating K

0
tip=Ktip for

the auxiliary problem (c), and K0tip=K for the auxiliary problem (b) will be given in the following section.

Fig. 2. Spherical geometry used to be infer solution to auxiliary problem (c) shown in Fig. 1.
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3. The crack-tip stress intensity factor

Throughout this paper, it is assumed that the size of the inclusion is small compared with the length of
the crack. Under this condition the applied strain field to the inclusion shown in Fig. 1 is that of the mode I
crack controlled by the remote SIF K

eA11 ¼
K

EM
ffiffiffiffiffiffiffi
2pr

p ð1þ mÞ cos h
2

ð1	 2mÞ 	 sin h
2
sin
3h
2

� �

eA22 ¼
K

EM
ffiffiffiffiffiffiffi
2pr

p ð1þ mÞ cos h
2

ð1	 2mÞ þ sin h
2
sin
3h
2

� �

eA12 ¼
K

EM
ffiffiffiffiffiffiffi
2pr

p ð1þ mÞ cos h
2
sin

h
2
cos
3h
2

eA33 ¼ eA13 ¼ eA23 ¼ 0 for plane strain

9>>>>>>>>>>=
>>>>>>>>>>;

ð3:1Þ

For a differential element with circular section inside Ac, the components of the Eshelby tensor are given by
Mura (1987)

S1111 ¼ S2222 ¼
5	 4m
8ð1	 mÞ ; S1122 ¼ S2222 ¼

4m 	 1
8ð1	 mÞ

S1133 ¼ S2233 ¼
m

2ð1	 mÞ ; S1212 ¼
3	 4m
4ð1	 mÞ

S1313 ¼ S2323 ¼
1

2

9>>>>>=
>>>>>;

ð3:2Þ

And other components are zero. Substituting (3.2) into (2.7) and (2.8), it gives

L1111 ¼ L2222 ¼
ð1	 aÞð1	 mÞð3	 4m þ 5a 	 4maÞ

ð1þ a 	 2mÞð1þ 3a 	 4maÞ

L1122 ¼ L2211 ¼ 	 ð1	 aÞ2ð1	 mÞð1	 4mÞ
ð1þ a 	 2mÞð1þ 3a 	 4maÞ

L1133 ¼ L2233 ¼
ð1	 aÞ2m

ð1þ a 	 2mÞ ; L3333 ¼ ð1	 aÞ

L1212 ¼
4ð1	 aÞð1	 mÞ
ð1þ 3a 	 4maÞ ; L1313 ¼ L2323 ¼

2ð1	 aÞ
1þ a

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð3:3Þ

and

T1111 ¼ T2222 ¼
að1	 mÞð3	 4m þ 5a 	 4maÞ
ð1þ a 	 2mÞð1þ 3a 	 4maÞ

T1122 ¼ T2211 ¼
að1	 aÞð1	 mÞð1	 4mÞ

ð1þ a 	 2mÞð1þ 3a 	 4maÞ

T1133 ¼ T2233 ¼
að1	 aÞm

ð1þ a 	 2mÞ ; T3333 ¼ a

T1212 ¼
4að1	 mÞ

ð1þ 3a 	 4maÞ

T1313 ¼ T2323 ¼
2a

ð1þ aÞ

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

ð3:4Þ

Other components of the L and T tensors are zero.
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The transformation strains used in (2.12) are determined by (2.6)

eTAaa ¼ ðL1111 þ L1122ÞðeA11 þ eA22Þ ¼
4ð1	 aÞð1	 2mÞð1	 m2ÞK

ð1þ a 	 2mÞEM
ffiffiffiffiffiffiffi
2pr

p cos
h
2

eTA22 	 eTA11 ¼ ðL1111 	 L1122ÞðeA22 	 eA11Þ ¼
4ð1	 aÞð1	 m2ÞK

ð1þ 3a 	 4maÞEM
ffiffiffiffiffiffiffi
2pr

p sin h sin
3h
2

eTA12 ¼ L1212eA12 ¼
2ð1	 aÞð1	 m2ÞK

ð1þ 3a 	 4maÞEM
ffiffiffiffiffiffiffi
2pr

p sin h cos
3h
2

9>>>>>>>>=
>>>>>>>>;

ð3:5Þ

eTeaa ¼ ðT1111 þ T1122ÞðeT
�
11 þ eT

�
22 Þ ¼ C3ðeT�11 þ eT

�
22 Þ

eTe22 	 eTe11 ¼ ðT1111 	 T1122ÞðeT
�
22 	 eT�11 Þ ¼ C4ðeT�22 	 eT�11 Þ

eTe12 ¼ T1212eT�12 ¼ C5eT�12

9>=
>; ð3:6Þ

Substituting (3.5), (3.6) and (2.10) into (2.12), we have

K0tip
K

¼ 1þ C1b1 þ C2b2 þ ðC3b3 þ C4b4 þ C5b5Þ=K ð3:7Þ

where

C1 ¼
ð1	 aÞð1	 2mÞ
ð1þ a 	 2mÞ ð3:8Þ

C2 ¼
3ð1	 aÞ

2ð1þ 3a 	 4maÞ ð3:9Þ

C3 ¼ C5 ¼
4að1	 mÞ

ð1þ 3a 	 4maÞ ð3:10Þ

C4 ¼
2að1	 mÞ

ð1þ a 	 2mÞ ð3:11Þ

b1 ¼
1

p

Z p

0

ln½R hð Þ� cos h
2
cos
3h
2
dh ð3:12Þ

b2 ¼
1

p

Z p

0

ln½R hð Þ� sin2 h cos hdh ð3:13Þ

b3 ¼
EM

2
ffiffiffiffiffiffi
2p

p
ð1	 m2Þ

ðeT�11 þ eT�22 ÞLimq!0

Z p

0

cos
3

2
hdh

Z Rð#Þ

q
r	1=2 dr

¼ EMffiffiffiffiffiffi
2p

p
ð1	 m2Þ

ðeT�11 þ eT�22 Þ
Z p

0

RðhÞ1=2 cos 3
2

hdh ð3:14Þ

b4 ¼
3EM

2
ffiffiffiffiffiffi
2p

p
ð1	 m2Þ

eT�12Limq!0

Z p

0

sin h cos
5

2
hdh

Z Rð#Þ

q
r	1=2 dr

¼ 3EMffiffiffiffiffiffi
2p

p
ð1	 m2Þ

eT�12

Z p

0

RðhÞ1=2 sin h cos
5

2
hdh ð3:15Þ
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b5 ¼
3EM

4
ffiffiffiffiffiffi
2p

p
ð1	 m2Þ

ðeT�22 	 eT�11 ÞLimq!0

Z p

0

sin h sin
5

2
hdh

Z Rð#Þ

q
r	1=2 dr

¼ 3EM
2
ffiffiffiffiffiffi
2p

p
ð1	 m2Þ

ðeT�22 	 eT�11 Þ
Z p

0

RðhÞ1=2 sin h sin
5

2
hdh ð3:16Þ

Since the integral
R p
0
cosðh=2Þ cosð3h=2Þdh ¼ 0 and

R p
0
C2 sin

2 h cos hdh ¼ 0 in (3.12) and (3.13), the b1 and
b2 are independent of the radius of the inner circular core q. It can be also seen that b1 and b2 are un-
changed when RðhÞ is replaced by kRðhÞ and are thus dependent on the shape, but not on the size of the
inclusion.
We return to the problem shown in Fig. 2. The integral in the definitions of b1 
 b5 are easily evaluated

for this geometry (b1 ¼ 0:5, b2 ¼ 	0:125, b3 ¼ b4 ¼ b5 ¼ 0). Then, the solution to the auxiliary problem (b)
for this geometry is given by

K0tip
K

¼ 1þ 0:5C1 	 0:125C2 ð3:17Þ

from (2.13) and (3.17), one immediately obtains the solution for the auxiliary problem (c) shown in Fig.
1(c).

K0tip
Ktip

¼ 1þ 0:5C1 	 0:125C2ffiffiffi
a

p ð3:18Þ

By combining (3.7) and (3.18) according to (2.11), the general solution for the primary problem shown in
Fig. 1(a) can be finally given by

Ktip
K

¼
ffiffiffi
a

p
½1þ b1C1 þ b2C2 þ ðC3b3 þ C4b4 þ C5b5Þ=K�

1þ 0:5C1 	 0:125C2
ð3:19Þ

To obtain an explicit solution, it is assumed in the previous derivation that the Poisson�s ratios of the
inclusion and matrix material are the same. This assumption sets a limit to apply the Eq. (3.19) for more
general case. However, this limitation may be relaxed by introduction a modified factor. The J-integral
from integration contours that circle the crack tip lying outside inclusion is given by

J ¼ ð1	 m2MÞK2=EM ð3:20Þ
while the J-integral for all such contours lying inside inclusion

Jtip ¼ ð1	 m2I ÞK2tip=EI ð3:21Þ

Then one obtains

Ktip
K

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jtipa
J

ð1	 m2MÞ
ð1	 m2I Þ

s
ð3:22Þ

for plane strain condition.
For the case of mI ¼ mM, (3.19) and (3.22) are identical if the effect of the inclusion on J can be neglected.

This is true because we have assumed that the remote stress–strain field is controlled by K, i.e., the per-
turbation of the small inclusion on the remote K-field is neglected. Consequently, (3.19) and (3.22) leads to
a modified factor ðð1	 m2MÞ=ð1	 m2I ÞÞ

1=2
in (3.19)

Ktip
K

¼ C0½1þ C1b1 þ C2b2 þ ðC3b3 þ C4b4 þ C5b5Þ=K� ð3:23Þ
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where

C0 ¼
1

1þ 0:5C1 	 0:125C2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1	 m2MÞ
1	 m2I

s
ð3:24Þ

for the case of mI 6¼ mM. It should be noted that the Poisson�s ratio used in C1 
 C5 is mM because C1 
 C5 are
derived from the remote stain field. As well be seen in following section, the modified formula (3.23) gives
good approximation for the case of mI 6¼ mM.
For homogeneous inclusion, a ¼ 1 and mI ¼ mM, C1 ¼ C2 ¼ 0, C0 ¼ C3 ¼ C4 ¼ C5 ¼ 1, (3.23) returns to

the well-known solution (Lambropoulos, 1986)

Ktip
K

¼ 1þ b3 þ b4 þ b5
K

ð3:25Þ

The increment in Ktip, DKtip, is given by

DKtip ¼ b3 þ b4 þ b5 for homogeneous inclusion ð3:26Þ

and

DKtip ¼ DKmtip þ DKTtip for inhomogeneous inclusion ð3:27Þ

where

DKmtip ¼ ½C0 	 1þ C0ðC1b1 þ C2b2Þ�K ð3:28Þ

DKTtip ¼ C0ðC3b3 þ C4b4 þ C5b5Þ ð3:29Þ

DKmtip and DKTtip are the increments contributed by modulus toughening and transformation toughening,
respectively. Both of them are dependent of the shape of the inclusion and the modulus difference between
inclusion and matrix material. However, DKmtip is independent of the size of the inclusion and dependent of
the applied stress intensity, while DKTtip is dependent on the size of the inclusion and independent of the
applied stress intensity.

4. Applications

4.1. Pure modulus toughening

Because the fundamental formula (3.23) may return to the well-known theoretical solution for pure
transformation toughening for homogeneous inclusion, the accuracy of the fundamental formula may be
examined by the case of pure modulus toughening.
When the inherent transformation strains vanish, Eq. (3.23) becomes

Ktip
K

¼ C0ð1þ C1b1 þ C2b2Þ ð4:1Þ

corresponding to pure modulus contribution to crack tip field. An exact solution to circular inclusion
centered at the tip of a semi-infinite crack is given by Steif (1987). For an inclusion with arbitrary shape, a
close form solution to lowest order effect of the modulus difference between inclusion and matrix material is
given by Hutchinson (1987). The model of circular inclusion centered at the tip of a semi-infinite crack is
firstly used to measure the accuracy of (4.1). As shown in Fig. 3, good agreement between our solution and
Steif�s results is found. For comparison, the lowest order solution and the modified lowest order results
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(Hutchinson, 1987) are also plotted in Fig. 3. Though the agreement is good for the modified lowest order
results when EI=EM < 2, it fails as EI=EM becomes larger than 2.
Detailed finite element (FE) analyses were also performed for this model. To calculate the Ktip in the FE-

analyses, three J -integral contours within inclusion were set around crack-tip. The Ktip was calculated by
(3.21) from the mean value of the three contours (note, in fact, that they nearly have no difference), Jtip . The
K used to normalize Ktip is calculated for the mode of homogeneous matrix material at the same applied
load. The FE-results are also plotted in Fig. 3. They are in excellent agreement with the exact solution
obtained by Steif (1987). Therefore, the FE-analyses can be used to measure the accuracy of (4.1) for the
inclusion with arbitrary shape.
Fig. 4 compares the results calculated from (4.1) and the modified lowest order solution (Hutchinson,

1987) with those obtained from FE-analyses for a square inclusion. The crack tip partially penetrates the

Fig. 3. A comparison of the selected results for a circular inclusion centered at crack tip.

Fig. 4. A comparison of the results calculated from Eq. (4.1), the modified lowest order solution and FE-analyses for a square

inclusion.
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inclusion (1/4 edge length). As shown in Fig. 4 our results are in good agreement with those of the FE-
analyses.
In Fig. 5, the value of Ktip=K for a square inclusion centered at crack tip predicted from (4.1) are

compared with the results of FE-analyses for the case where mI and mM are different, and good agreement
can be found.

4.2. Variation in SIF for a transformed particle

In this section, we assumed that an inclusion surrounding crack-tip undergoes a stress-free transfor-
mation strain, eT

�
, induced by phase transformation or thermal expansion mismatch.

Fig. 6 shows the DKtip calculated from (3.27) as a function of EI=EM for a crack partially penetrating a
fibre shape inclusion with transformation strains eT

�

11 ¼ eT
�

22 ¼ 0:02 and eT
�

12 ¼ 0:04. As shown in Fig. 6, both
Kmtip and KTtip are strongly dependent of the modulus ratio a, Kmtip increases, while K

T
tip decreases, with in-

creasing modulus ratio a.
The incremental transformation contribution predicted from present solution (3.29) is quite different

that from previous analysis (3.26), which was derived based on homogeneous inclusion mode. One can
introduce a parameter defined by

I ¼ C0ðC3b3 þ C4b4 þ C5b5Þ
b3 þ b4 þ b5

ð4:2Þ

to measure the influence of modulus change on transformation toughening.
Fig. 7 shows the influence factor I for the calculation mode shown in Fig. 6 as a function of EI=EM for

different Poisson�s ratios. This result clearly shows that the transformation toughening is strongly affected
by modulus of the transformation zone. Therefore, the modulus change induced by phase transformation
should be taken account in the calculation of transformation toughening. This situation has been over-
looked in the previous study of transformation toughening.

Fig. 5. A comparison of the results calculated from Eq. (4.1) and FE-analyses for a square inclusion in which both elastic modulus and

Poisson�s ratio differ from those of matrix material.
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4.3. Microcrack toughening in brittle materials

Detailed numerical analysis for microcrack toughening has been performed by Hutchinson for several
limited cases (Hutchinson, 1987). To compare with Hutchinson�s results, the microcrack toughening effects
were evaluated by the present solution to two specific shapes of microcrack zone dictated by two possible
microcrack nucleation criteria. The first is based on the mean stress; the second is based on the maximum
normal stress. In each case it was assumed that there is no preferred orientation to the microcracks so that
the reduced moduli are isotropic and uniform. Results for both stationary cracks and cracks which have
achieved steady-state growth conditions will be given so as to assess the potential for crack growth fol-

Fig. 6. DKtip for a transformed fibre shape inclusion.

Fig. 7. Influence factor I as function of EI=EM for different Poisson�s ratio.
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lowing initiation. In every example the zone shape and size are determined using the unperturbed elastic
stress field controlled by the remote SIF K.
The modulus EI and Poisson�s ratio mI of the micro-cracked material can be determined from Hutchinson

(1987)

EM
EI

¼ 1þ 32
45

ð1	 mMÞð5	 mMÞ
ð2	 mMÞ

f ð4:3Þ

mI ¼ mM 	 16mM
15

ð3	 mMÞð1	 m2MÞ
ð2	 mMÞ

f ð4:4Þ

f ¼ l3N is the microcrack density parameter, as described by Budiansky and O�connell (1976), where l is the
microcrack length and N the number density per unit volume. During microcrack opening, the release of
residual stress rR will result in a dilatational strain hT that is given by Hutchinson (1987)

hT ¼ 16
3
ð1	 m2MÞ

rR
EM

f ð4:5Þ

where hT ¼ 1:5 eT
�

ii =ð1þ mMÞ for plane strain, can be evaluated from the dilatational strains if desired. In the
case of isotropic dilatation, the nonzero components of the dilatational strains are eT

�
11 and e

T�
22 , and e

T�
11 ¼ eT

�
22

for plane strain. In this section, to compare with Hutchinson�s results we use hT replacing the dilatational
strains and the calculated results are limited to the lowest order effects of the microcrack density parameter
f because it is small. Values of f about 0.3 near the crack tip have been observed (Ruehle et al., 1987).

4.3.1. Stationary and steadily growing crack with nucleation at a critical mean stress
With rm ¼ rii=3 as the mean stress, suppose a simplified nucleation criterion:

f ¼ 0 for ðrmÞmax < rcm
f ¼ N for ðrmÞmax > rcm

ð4:6Þ

where rcm is the critical value at which microcrack nucleation is complete in the microcrack zone. The
boundary of the microcrack zone Ac for stationary crack (Fig. 8) is given by

RðhÞ ¼ 2

9p
ð1þ mMÞ2

K
rcm

� �2
cos2

h
2

� �
ð4:7Þ

As crack grows, a wake of microcrack zone is formed. The leading edge of the zone is given by (4.7) for
jhj < 600, and the half-height of the zone, H is determined by (4.7) at h ¼ 60�

H ¼
ffiffiffi
3

p
ð1þ mMÞ2

12p
K
rcm

� �2
ð4:8Þ

Then, (3.28) and (3.29) give (mM ¼ 1=3)
DKmtip ¼ 	0:72Kf
DKTtip ¼ 0

�
ð4:9Þ

for stationary crack, and

DKmtip ¼ 	0:92Kf
DKTtip ¼ 	ð0:32	 0:47f ÞEhT

ffiffiffiffi
H

p
�

ð4:10Þ

for steadily growing crack with the zone boundary specified by (4.7) for hj j < 60� and by jx2j ¼ H for
jhj > 60�.
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4.3.2. Stationary and steadily growing crack with nucleation at a critical maximum normal stress
Now suppose that microcrack nucleation occurs when the maximum principal stress r1 reaches a critical

value rc, i.e.

f ¼ 0 for ðr1Þmax < rc
f ¼ N for ðr1Þmax > rc

ð4:11Þ

where, as before, ð Þmax signifies the maximum value attained over the history. The boundary of Ac for
stationary crack is determined by

RðhÞ ¼ 1

2p
K
rc

� �2
cos

h
2

�
þ 1
2
sin hj j

�2
ð4:12Þ

and this is shown in Fig. 8(b). The half-height of Ac is obtained at h ¼ 74:84� and is

H ¼ 0:2504 K
rcm

� �2
ð4:13Þ

Then, Eq. (3.28) and (3.29) give (mM ¼ 1=3)
DKmtip ¼ 	0:82Kf
DKTtip ¼ 	ð0:15	 0:18f ÞEhT

ffiffiffiffi
H

p
�

ð4:14Þ

for stationary crack.
For steadily growing crack, the zone Ac is specified by (4.12) for jhj < 74:84� and by jx2j ¼ H for

jhj > 74:84�. Thus, Eq. (3.28) and (3.29) give

Fig. 8. Microcracked zones for stationary and steadily growing cracks for two nucleation criteria: (a) critical mean stress criterion,

(b) critical maximum principal stress criterion.
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DKmtip ¼ 	0:97Kf
DKTtip ¼ 	ð0:4	 0:48f ÞEhT

ffiffiffiffi
H

p
�

ð4:15Þ

All the results for the two models have been assembled in Table 1, and compared with Hutchinson�s
results (1987). While the two models give similar results both for our and Hutchinson�s analyses, the dif-
ference between our and Hutchinson�s results are appreciable. The difference stems from two sources: One
is the modulus toughening. Our solution is not limited to lowest order effect of modulus ratio between
inclusion and matrix material. Hence, it will, as shown in Figs. (3) and (4), give more exact prediction than
the lowest order accuracy. The other is the transformation toughening. Our solution has been taken ac-
count for the influence of the modulus change in transformation zone on the transformation toughening
which has been overlooked in previous analysis. As shown in Table 1, the transformation contribution is
weakened by microcracking. This result is reasonable because at the same dilatational strain level a soft
transformation zone will produce lower compressive stress than hard one.

5. Conclusions and discussions

When a crack is lodged in an inhomogeneous inclusion, a transformation or microcrack process zone,
the modulus variation and stress-free transformation strain in which will change the near-tip field of the
crack. A close form of solution for predicting the toughening (or amplification) effect contributed from
modulus variation and transformation strain, as well as interaction between them is derived based on
Eshelby equivalent inclusion approach. The solution is accurate, as validated by several numerical exam-
ples, and provides a quick estimate for the effects of shape, size, and stiffness of an inclusion or a process
zone surrounding crack-tip on the crack-tip field.
The limitation of the solution is that the remote K-field was used to calculate the equivalent transfor-

mation strain of the inclusion or process zone. Hence, the size of the inclusion or process zone must be small
compared with the length of crack and other dimensions of the cracked body.
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